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ABSTRACT
Multi-view Multi-human association and tracking (MvMHAT) aims
to track a group of people over time in each view, as well as to
identify the same person across different views at the same time.
This is a relatively new problem but is very important for multi-
person scene video surveillance. Different from previous multi-
ple object tracking (MOT) and multi-target multi-camera tracking
(MTMCT) tasks, which only consider the over-time human associa-
tion, MvMHAT requires to jointly achieve both cross-view and over-
time data association. In this paper, we model this problem with
a self-supervised learning framework and leverage an end-to-end
network to tackle it. Specifically, we propose a spatial-temporal asso-
ciation network with two designed self-supervised learning losses,
including a symmetric-similarity loss and a transitive-similarity
loss, at each time to associate the multiple humans over time and
across views. Besides, to promote the research on MvMHAT, we
build a new large-scale benchmark for the training and testing of
different algorithms. Extensive experiments on the proposed bench-
mark verify the effectiveness of our method. We have released the
benchmark and code to the public.
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Figure 1: An illustration of the proposedMvMHATproblem.

1 INTRODUCTION
Multiple object tracking (MOT), especially multiple human track-
ing, is a fundamental and important task in computer vision and
multimedia analysis [16, 38, 44, 45]. As an extension of MOT, multi-
view multi-human association and tracking (MvMHAT) aims to
continuously track a group of people in each view while simul-
taneously identifying the same persons across multiple views at
each time [18]. With MvMHAT, we can not only record the tem-
poral trajectories of the involved humans (referred to as subjects
in this paper), but also roundly observe each subject’s detail, e.g.,
the human pose and behavior, from different views, which makes
MvMHAT to facilitate many potential real-world applications. A
typical example is video surveillance – imagining a scenario with
multiple installed or wearable cameras from different views, we can
employ MvMHAT to associate and analyze the collected videos for
collaborative human activity recognition and important/abnormal
person detection. So far, MvMHAT is a relatively new task with a
handful of studies [15, 18, 54]. Among them, most works mainly
study the over-time human tracking but not explicitly the cross-
view human association [15, 54]. A couple of recent works [18, 19]
study the MvMHAT with two complementary views for certain
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specific application scenarios. In this paper, as shown in Fig. 1, we
are interested in MvMHAT in a more general setting where (arbi-
trary) multiple cameras (without calibration) are used to cover a
multi-person scene from different views.

Compared to MOT, MvMHAT is a more challenging problem
since we need to associate all the subjects appearing in different
views during the tracking. The association usually suffers from
the unknown and large view differences, illumination differences,
(Views 1 and View 2 in Fig. 1), and the inconsistency of involved
subjects (time 𝑡1 and time 𝑡3 in Views 1), etc. Moreover, with un-
calibrated multi-view cameras, the human motion feature, a core
cue for human matching in tracking, is usually inconsistent in dif-
ferent views and may not be effective when used for measuring
the subject similarity for the cross-view association. This way, the
subject appearance representation becomes particularly important.
Considering this, in this paper, we first propose a unified framework
for arbitrary-number multi-view MvMHAT. Besides, as we know,
most previous works for MOT learn an appearance model from
abundant labeled data for the over-time and cross-view appearance
measurement. In MvMHAT, we actually have various appearance
information of each subject along time and across views. The same
person appearing in two views or points of time should present
symmetric similarity, and such similarity among multiple views or
at different points of time should be transitively consistent. This
observation inspires us to adopt a self-supervised method to utilize
the spatial-temporal consistency.

In this paper, we propose a self-supervised learning network to
solve the MHAT problem. Specifically, given several videos captur-
ing a group of people from different views, we first sample several
frames from different views and time and apply the convolutional
neural networks (CNN) to learn the embedding features of each
subject. Then, we propose a spatial-temporal association network
to model the over-time temporal association and the cross-view
spatial association, which generates a matching matrix and can
be self-supervised by a couple of symmetric-similarity (SSIM) and
transitive-similarity (TSIM) losses as pretext task. In the inference
stage, we leverage a new joint tracking and association scheme
to solve the MvMHAT task. Moreover, the current research on
MvMHAT is restricted by the lack of an appropriate public dataset
that can be accessed and used to train and evaluate the deep net-
work based algorithms. In this paper, we build a new large-scale
benchmark based on several public datasets and self-collected data
for the training and testing of the MvMHAT algorithm. The main
contributions of this paper are:
1) We propose a self-supervised learning framework for MvMHAT.
To the best of our knowledge, this is the first work to model such a
problem in a self-supervised framework.
2) We propose the pairwise symmetric-similarity and triplewise
transitive-similarity pretext tasks, which can be modeled as differ-
entiable loss functions, to learn the representations for establishing
the multi-view and over-time subject association and tracking.
3) We build a new benchmark for training and testing MvMHAT. Ex-
tensive experiments on the proposed datasets verify the rationality
of our problem definition, the usefulness of the proposed bench-
mark, and the effectiveness of our method. We have released the
benchmark to the public at https://github.com/realgump/MvMHAT.

2 RELATEDWORK
MOT is a classical problem and has many applications in video
processing and analysis. The most famous framework for MOT is
the tracking-by-detection scheme, in which an object detector is
first applied, and the detected subjects are then associated across
frames to achieve multiple object tracking.. In this scheme, the
most important issue is data association, which is mostly based
on appearance similarity and motion consistency. The motion fea-
tures can follow linear or nonlinear motion models. The linear
model assumes the target to have a linear movement with constant
velocity for a period of time [10, 41, 51], which is used in most
existing trackers. The nonlinear one, to some extent, can better
capture complex movements and provide a more accurate motion
prediction [56, 57]. Many previous works on MOT try to develop
more powerful appearance features for object association, from the
hand-crafted appearance features such as color histograms [10, 58],
to the recent deep network based appearance features [8, 52, 55].
This way, a key issue for such tracking-by-detection methods lies
in the learning of human appearance features. More recent works
also try to achieve object detection and tracking simultaneously
using an end-to-end framework [3, 62]. For a more comprehensive
review on MOT, we refer readers to several excellent surveys on
tracking [9, 42]. Note that, the problem in this paper is extended
from the MOT but not focused on the study of general MOT.

MTMCT (multi-target multi-camera tracking) is an extension
of MOT, which aims to track and re-identify the targets (mainly
for humans) in a large field, e.g., a campus, using many cameras
installed at many sites with little or no field of view overlap. Several
works [6, 7, 17, 39] focus on the inter-camera tracklet association
by assuming that the within-camera tracklets in each camera are
priorly given or obtained by existing algorithms. This setting is
not practical in a real-world application. Several other works aim
to address a more realistic problem by solving both intra- and
inter-camera tracking jointly [37, 40, 41, 43]. The main thought for
solving such a problem is to learn more discriminative appearance
features [41] or design a more exquisite optimization model [43].
Differently, in this paper we are interested in handling a different
multi-human association and tracking problem as discussed below.

MvMHAT andMTMCT both stem from theMOT task. However,
they differ in two main perspectives: 1) They have different problem
definitions. Besides temporal tracking, MTMCT also aims to handle
the human re-identification, which is a ranking problem. Differently,
MvMHAT focuses on the multi-human matching, which is a classi-
fication problem. 2) They use different camera settings. MTMCT
uses multiple cameras distributed at different sites in a large area
with no field-of-view (FOV) overlap. Differently, MvMHAT uses
multi-view all-around cameras with overlapping FOVs covering
the same scene. Several early works [1, 14, 15, 25, 28, 31] have
studied a similar problem of tracking multiple humans using mul-
tiple FOV-overlapped cameras, in which the subjects commonly
appear in different views at the same time. Recently, a series of
works by Xu et al. [35, 53, 54] propose to track multiple people
in a scene, e.g., a garden, using several cameras and collect new
datasets for this research. This series of works extract various hu-
man features for tracking, including the varied poses and human
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actions, etc. However, the above works mainly focus on the over-
time human tracking performance but not assessing the cross-view
human association results. More recently, a series of works by Han
et al. [18, 19] propose to jointly solve the human association and
tracking problem using two complementary views, which, however,
is a specific setting used in several application scenarios. Differently,
in this paper, we focus on a more general setting where (arbitrary)
multiple cameras observe a scene from different views. Also re-
lated to our work is a study on multi-view multi-object association
(matching) [13, 20, 21, 60, 61] by exploring the matching cues, in-
cluding human appearance [13, 60], spatial relation [20, 21] and
motions [61], all of which only focus on cross-view association but
not involving the over-time tracking.

Self-supervised Learning. Unsupervised learning has been
widely used in many vision and multimedia computing tasks, in-
cluding the image-based representation learning [12, 59] and video-
level temporal coherence [30, 46], as well as person re-identification
(re-id) [33, 34, 49] which is similar to our problem that learns the
appearance similarity. The global retrieval and matching based re-
id features can not be directly used for MOT, which is a local and
constrained association problem, as discussed in [26]. However,
there are very few works on studying the unsupervised learning
based MOT, especially for the multi-human tracking [24, 27], not to
mention the MvMHAT. As a special kind of unsupervised learning,
self-supervised learning aims to construct the pretext tasks, com-
monly obtained by the acknowledged prior or self-constraint, to
learn the network from unlabeled data. In this paper, we unveil the
power of self-supervised learning for data association in MvMHAT.

3 OUR APPROACH
3.1 Problem Formulation
Given 𝑆 synchronized videos taken from different views, we aim
to address the Multi-view Multi-Human Association and Tracking
(MvMHAT) task, which collaboratively tracks all the subjects in all
the videos as well as identifying all the same persons appearing in
different views. Specifically, we assume that the subjects have been
detected in each frame in advance. The subjects are represented
as bounding boxes in each view 𝑣 at each time 𝑡 . For each person
in each view, MvMHAT aims to connect the subjects over time to
form the single-view trajectory. Besides, MvMHAT also identifies
the trajectories of the same person across all the views.

In this work, we formulate the above collaborative tracking, i.e.,
MvMHAT, as a spatial-temporal subject association problem. On
one hand, the temporal (over-time) association can be regarded as
a single-view multiple object tracking (MOT) problem. Similar to
most MOT approaches, the goal is to solve the association matrix
between tracklets T𝑡−1 until frame 𝑡 − 1 in view 𝑣 , and all the de-
tections B𝑣

𝑡 = {𝐵𝑖 |𝑖 = 1, 2, ..., 𝑁 𝑣
𝑡 } on frame 𝑡 . Thus the association

matrix is represented as X𝑣
𝑡 ∈ R𝑀𝑡−1×𝑁 𝑣

𝑡 , where 𝑀𝑡−1 and 𝑁 𝑣
𝑡 de-

note the number of trajectories T𝑡−1 and subjects B𝑣
𝑡 , respectively.

On the other hand, the spatial (cross-view) association is a multi-
view subject matching problem. At each time 𝑡 , we establish the
association relation between different views. Taking a pair of views
𝑣 and 𝑢 for example, the cross-view subject association between B𝑣

𝑡

and B𝑢
𝑡 can be represented as a matching matrix X𝑣,𝑢 ∈ R𝑁 𝑣

𝑡 ×𝑁𝑢
𝑡 ,

where 𝑁𝑢
𝑡 denotes the number of subjects in B𝑢

𝑡 .

As shown in Fig. 2, the multi-view video sequences provide
the all-around and time-varying appearance of the subjects in the
scene. The same person appearing in pairwise views or pairwise
frames presents symmetric-similarity. They also show the cycle-
consistency among different views and time. This inspires us to un-
veil self-supervised power for establishing the over-time and cross-
view subject similarity. In the following, we adopt a self-supervised
learning network for spatial-temporal subject association.

3.2 Spatial-Temporal Association Network
The spatial-temporal association network takes the video sequence
without annotation as input, which learns the subject similarity
used for association in a self-supervised manner. Specifically, as
shown in Fig. 2, given a video frame at time 𝑡 from the 𝑣-th-view
video, we first apply a human detector to obtain all the subjects
B𝑣
𝑡 in this frame. With the detected subjects, we apply the feature

extraction network, denoted as Φ, to get the feature representation
for all subjects E𝑣𝑡 = Φ(B𝑣

𝑡 ), by which we get E𝑣𝑡 ∈ R𝑁 𝑣
𝑡 ×𝐷 , where

𝑁 𝑣
𝑡 denotes the number of subjects in view 𝑣 at time 𝑡 , and𝐷 denotes

the dimension of feature for each subject.
With the extracted features on each frame, we can then define

the subject similarity and association across frames and over time.
Spatial association. Given a pair of frames at the same point of
time 𝑡 but from different views 𝑣 and 𝑢, respectively, the subject
similarity matrix between these two frames can be calculated by

S𝑣,𝑢𝑡 = E𝑣𝑡 · (E𝑢𝑡 )T ∈ R𝑁
𝑣
𝑡 ×𝑁𝑢

𝑡 , (1)

whose value at 𝑖-th row and 𝑗-th column, i.e., S𝑣,𝑢𝑡 (𝑖, 𝑗) represents
the similarity between 𝑖-th subject in B𝑣

𝑡 and 𝑗-th subject in B𝑢
𝑡 .

Temporal association. Similarly, given a pair of frames from the
same view 𝑣 but at different points of time 𝑡 and 𝑠 , respectively, the
subject similarity matrix can be calculated by

S𝑣𝑡,𝑠 = E𝑣𝑡 · (E𝑣𝑠 )T ∈ R𝑁
𝑣
𝑡 ×𝑁 𝑣

𝑠 . (2)

We then compute the matching matrix X ∈ [0, 1] based on the
above similarity matrix. For clarity, we simplify both the cross-
view matrix in Eq. (1) and the over-time similarity matrix in Eq. (2)
as S. We use a temperature-adaptive softmax operation 𝑓 [23] to
compute the matching matrix as

X(𝑟, 𝑐) = 𝑓𝑟,𝑐 (S) =
exp(𝜏S(𝑟, 𝑐))∑𝐶

𝑐′=1 exp(𝜏S(𝑟, 𝑐 ′))
, (3)

where 𝑟, 𝑐 denote the indices of row and column in S, respectively,
and 𝐶 is the number of columns for S. Basically, we apply the
softmax operation on each row of the matrix S and get Xwith same
size as S but taking values in [0, 1], as shown in Fig. 2. In Eq. (3),
we use the softmax with an adjustable value 𝜏 as the adaptive
temperature

𝜏 =
1
𝜖

log[𝛿 (𝐶 − 1) + 1
1 − 𝛿

], (4)

which controls the soften ability of the function. 𝜖 and 𝛿 are two
preset parameters.

So far, we get the predicted matching matrix X. If we have the
annotated data with a human identification label, the network can
be trained with the supervision of ground-truth X. In this paper,
we aim to explore the symmetric-supervised pretext for learning
the network without manual-annotated ground-truth labels.
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Figure 2: Overall framework of the proposed method.

3.3 Self-supervised Learning Loss
We consider two pretext tasks to construct the self-supervised loss.
First, the same person appearing in a pair of frames from different
views or different points of time should be consistent. As shown in
Fig. 3(a), for a subject #𝐴 in Frame #1, if the subject #𝐴′ in another
Frame #2 has the highest similarity with #𝐴 among all subjects;
the subject #𝐴 should also be the most similar subject with #𝐴′

among all subjects in Frame #1, i.e., the self-similarity property.
Second, as shown in Fig. 3(b), the subject has cycle consistency
among multiple views and different points of time. If subject #𝐴 in
Frame #1 is identity-consistent with #𝐴′ in Frame #2 and the subject
#𝐴′′ in Frame #3, then the subjects #𝐴′ and #𝐴′′ are expected to be
the same subject, i.e., the transitive-similarity property.

Frame 1

Frame 2 Frame 3

Frame 1

Frame 2

(a) (b)

A A

A’ A’ A’’

Figure 3: An illustration of the rationale of SSIM and TSIM.

Symmetric-Similarity (SSIM): Given the similarity matrix be-
tween the subjects within two sets I and J (including the cross-
view and over-time cases) as defined in Eqs. (1) and (2), which we
denote as S𝑖 𝑗 ∈ R |I |×|J | . We apply the softmax operation on the
similarity matrix S to get the matching matrix defined in Eq. (3) :

X𝑖 𝑗 = 𝑓 (S𝑖 𝑗 ) ∈ R |I |×|J | . (5)

The matching matrix X𝑖 𝑗 can be regarded as a mapping (matching
relation) from I to J , i.e., X𝑖 𝑗 : I ↦→ J . Specifically, the row sum
in X is equal to 1, and we can find the maximum in each row of X
to seek the matched subject for each one in I. Similarly, we get the
mapping from J to I as

X𝑗𝑖 = 𝑓 (ST
𝑖 𝑗 ) ∈ R

|J |×|I | . (6)

As shown in Fig. 2, we calculate the symmetric-similarity matrix

IS = X𝑖 𝑗 · X𝑗𝑖 ∈ R |I |×|I |, (7)

where IS can be regarded as the mapping: I ↦→ J ↦→ I. Ideally,
if the subjects in I and J are same, the result IS should be an
identity matrix. This way, we can calculate the loss between the
predicted IS and the identity matrix. However, this condition is not
always satisfied due to possible occluded or out-of-view subjects

over time and the field-of-view difference across views, resulting in
all-zero rows in X𝑖 𝑗 or X𝑗𝑖 . Therefore, we can not always compel
the result IS to approximate the identity matrix and have to apply
more deliberate supervision on it, which we will discuss later.

Transitive-Similarity (TSIM): Besides the pairwise symmet-
ric similarity, we also consider the triplewise transitive similarity.
Given the similarity matrix S𝑖 𝑗 between two sets I and J , and
S𝑗𝑘 between J and K , we also consider the consistent similarity
among this triplet, i.e.,I,J andK . We first compute the third-order
similarity matrix as

S̊𝑖𝑘 = S𝑖 𝑗 · S𝑗𝑘 , (𝑖 ≠ 𝑗 ≠ 𝑘), (8)

where S̊𝑖𝑘 ∈ R |I |×|K | actually represents the similarity between
the subjects in I and K , through the set of J . We then compute
the matching matrix as

X̊𝑖𝑘 = 𝑓 (S̊𝑖𝑘 ) ∈ R |I |×|K |, X̊𝑘𝑖 = 𝑓 (S̊T
𝑖𝑘
) ∈ R |K |×|I |, (9)

where S̊T
𝑖𝑘

denotes the transposition of S̊𝑖𝑘 . The result X̊𝑖𝑘 represents
themappingI ↦→ J ↦→ K . In contrast, X̊𝑘𝑖 represents themapping
along K ↦→ J ↦→ I.

Therefore, we calculate the transitive-similarity matrix

IT = X̊𝑖𝑘 · X̊𝑘𝑖 ∈ R |I |×|I |, (10)

where IT can be regarded as the mapping: I ↦→ J ↦→ K ↦→ J ↦→
I. Similar to the matrix IS defined in Eq. (7), we need to apply an
appropriate supervision on IT.

Self-supervised loss function. As discussed above, the ma-
trix IS and IT, which we uniformly denote as I provisionally, have
the property that their diagonal elements are 1 or 0, while other
elements are all 0 in the ideal case. In other words, the diagonal
elements of I should be equal to or greater than the others. With
this constraint, we apply the auxiliary loss function,

L(I) =
|I |∑
𝑟=1

relu(max
𝑐≠𝑟

I(𝑟, 𝑐) − I(𝑟, 𝑟 ) +𝑚), (11)

where 𝑟, 𝑐 denote the indices of row and column in I, respectively.
Specifically, for each row 𝑟 , if the non-diagonal elements I(𝑟, 𝑐) with
𝑐 ≠ 𝑟 are greater than the corresponding diagonal elements I(𝑟, 𝑟 ),
the loss will increase [47]. We only use the maximum non-diagonal
element max𝑐≠𝑟 I(𝑟, 𝑐) in each row to punish the hardest negative
sample. The margin𝑚 ≥ 0 is a pre-set parameter, which controls
the punishment scope for the gap between I(𝑟, 𝑐) and I(𝑟, 𝑟 ). In
other word, the loss will take effect iff I(𝑟, 𝑟 ) − max𝑐≠𝑟 I(𝑟, 𝑐) ≤ 𝑚.
This setting expects the diagonal element to be greater than the
other elements by a margin𝑚. This way, we define the loss

LSSIM = L(IS) + L(ITS ), (12)



where L(IS) and L(ITS ) compels IS to satisfy the above constraints
for all rows and columns, respectively. Similarly, we define the
TSIM loss

LTSIM = L(IT) + L(ITT) . (13)
The total loss is then calculated as L = LSSIM + LTSIM.

Discussion. Up to now, we have present the pairwise symmet-
ric similarity, the triplewise transitive similarity constraints, and
the corresponding loss functions. Actually, there are higher-order
conditions involving more views or time. In this section, we discuss
the generalization of the proposed self-supervised loss.

We denote the universal set of the indices, e.g., 𝑖, 𝑗 in Eq. (5), for
subject group on each frame as F , i.e., 𝑖, 𝑗 ∈ F . In order to associate
the subjects between each pair of (over-time or cross-view) frames,
we denote the subject association mapping between arbitrary pair
(𝑖, 𝑗) as M = {𝜑𝑖, 𝑗 |∀𝑖, 𝑗 ∈ F }. We first assume all the frames share
the same set of subjects. Thus Φ𝑖, 𝑗 is a bijection.

Given any two elements, i.e., ∀𝑓1, 𝑓𝑛 ∈ F , the mapping 𝜑𝑓1 𝑓𝑛
from 𝑓1 to 𝑓𝑛 can be decomposed as the combination of any number
of mappings.

𝜑𝑓1 𝑓𝑛 = 𝜑𝑓𝑛−1 𝑓𝑛 ◦ 𝜑𝑓𝑛−2 𝑓𝑛−1 ◦ · · · ◦ 𝜑𝑓1 𝑓2 , (14)

where 𝑓1, 𝑓2, ..., 𝑓𝑛 ∈ F , and ◦ denotes the mapping composition
operation. Next, the arbitrary-order combined mapping can be de-
rived by the proposed pairwise and triplewise mapping. Specifically,
Eq. (14) is equivalent to

𝜑𝑖𝑘 = 𝜑 𝑗𝑘 ◦ 𝜑𝑖 𝑗 , for ∀𝑖, 𝑗, 𝑘 ∈ F , (15)

From Eq. (15), we discuss the situations for three cases: (i) 𝑖 = 𝑘 = 𝑗 ;
(ii) 𝑖 = 𝑘 ≠ 𝑗 ; (iii) 𝑖 ≠ 𝑘 ≠ 𝑗 , from which we get the variations of
Eq. (15) as

(i) Self-Identity 𝜑𝑖𝑖 = 𝑖𝑑 (16)
(ii) Symmetric-Identity 𝜑 𝑗𝑖 ◦ 𝜑𝑖 𝑗 = 𝑖𝑑 (17)
(iii) Transitive-Identity 𝜑𝑘𝑖 ◦ 𝜑 𝑗𝑘 ◦ 𝜑𝑖 𝑗 = 𝑖𝑑 (18)

where 𝑖𝑑 is the identity mapping. The self-Identity condition nat-
urally holds in our problem because the same person in the same
frame has the same feature vector. This way, we only consider
the conditions in Eq. (17) and Eq. (18), for which we use doubly
stochastic matrix X to represent the association map 𝜑 . We get

(Symmetric-Similarity) X𝑖 𝑗 · X𝑗𝑖 = I (19)
(Transitive-Similarity) X𝑖 𝑗 · X𝑗𝑘 · X𝑘𝑖 = I (20)

where I is the identity matrix. In our condition, the numbers of
persons in different frames can be unequal. Thus, we only assume
X is the row stochastic matrix (sum of each row is 1) and use the
margin in Eq. (11) to relax the identity matrix I. As discussed above,
the proposed method with symmetric-similarity and transitive-
similarity self-supervision, can be regarded as the self-constraints
for the matching-relation mapping with arbitrary order.

3.4 The New Association and Tracking Scheme
With the above spatial-temporal association network in Section 3.2
and the proposed self-supervision loss in Section 3.3, our method
can be trained with the videos without tracking and association
labels. In the inference stage, we propose a new scheme to jointly ad-
dress the association and tracking tasks. Different from the training
stage, after computing matching matrices of spatial and temporal

association, we then use Hungarian Algotithm [29] to get permu-
tation matrix P ∈ {0, 1}. The proposed MvMHAT scheme can be
summarized in Algorithm 1. Specifically for the human ID assign-
ment strategy, we can explain it by an example. In view 𝑣1, we
assume a person 𝑃 firstly appears at time 𝑡1, then disappears at
𝑡2, and re-appears at 𝑡3. In this case, at 𝑡1, we use Algorithm 1 to
assign a new ID to 𝑃 and initialize a new tracklet. At 𝑡2, we mark
the unmatched tracklet to be ‘sleep’ in view 𝑣1. Here the tracklet of
subject 𝑃 in 𝑣1 interrupts but the multi-view tracklet of 𝑃 maintains
because it still appears in other views. At 𝑡3, we use the multi-view
subject association results to help match 𝑃 to the slept tracklet in
view 𝑣1. This is better than the traditional MOT, which has diffi-
culty to continuously track 𝑃 if it disappears for a long time – 𝑃 is
usually assigned with a new ID when it re-appears. However, as a
limitation of our method, incorrect cross-view association results
at 𝑡3 will cause wrong tracking results.

Algorithm 1:MvMHAT framework:
Input: V = {V𝑖 |𝑖 = 1, ..., 𝑆 }: a group of temporal-consecutive

videos (T frames for each) captured from different views.
Output: Tracked subject bounding boxes with associated ID.

1 for 𝑡 = 1 : 𝑇 do
2 Detect the subjects in frame 𝑡 for each view:

B𝑣
𝑡 = {𝐵𝑣

𝑡 𝑗
| 𝑗 = 1, 2, ..., 𝑁 𝑣

𝑡 }(𝑣 = 1, 2, ..., 𝑆) .
3 Generate spatial permutation matrixs

P𝑣,𝑢𝑡 , (𝑣 = 1, 2, ..., 𝑆 ;𝑢 = 1, 2, ..., 𝑆 ; 𝑣 ≠ 𝑢) , and temporal
permutation matrixs P𝑣

𝑡,𝑡−1, (𝑣 = 1, 2, ..., 𝑆) .
4 for 𝑣 = 1 : 𝑆 do
5 for 𝑝 = 1 : 𝑁 𝑣

𝑡 do
6 if ∃𝑟, s.t. P𝑣

𝑡,𝑡−1 (𝑝, 𝑟 ) = 1 then
7 Associate tracklet T𝑟 with B𝑣

𝑡𝑝
.

8 else if ∃(𝑢,𝑞), s.t. 𝑢 < 𝑣 ∧ P𝑣,𝑢𝑡 (𝑝,𝑞) = 1 then
9 Associate tracklet T𝑞 with B𝑣

𝑡𝑝
.

10 else
11 Initialize new tracklet T𝑝 with B𝑣

𝑡𝑝
.

12 return Bounding boxes with ID numbers

Implementation details. In the training stage, we take the
frames across all views from two different points of time as a group
of inputs of the network. We traverse all the frames from different
views along the whole video. We use annotated subject detections
in training and use results of Detectron [50] in inference. ResNet-
50 [22] is used as the backbone network in all experiments, which
has outputs of 1,000-dimensional features. In Eq. (4), we set 𝜖 = 0.1
and 𝛿 = 0.5. In Eq. (11), we set 𝑚 = 0.5. In the inference stage,
we also apply the Kalman filtering for over-time subject assocition
following the MOT algorithm DeepSort [5]. We use the Pytorch
backend for implementing the proposed network and run it on a
computer with RTX 2080Ti GPU. Our network is trained on 8,700
groups of frames for less than 10 epochs with the initial learning
rate 10−5, and the inference speed is 30+ FPS.

4 PROPOSED MVMHAT BENCHMARK
Dataset Collection. To the best of our knowledge, previous MOT
datasets with multiple views covering an overlapped region are



relatively small and only used for algorithm testing. To compre-
hensively train and test the proposed framework, we build a new
large-scale video dataset –MvMHAT benchmark, for themulti-view
multi-human association and tracking task. To reduce the cost of
data collection and annotationwhilemaintaining the usefulness and
credibility of the proposed dataset, part of videos and corresponding
annotations in MvMHAT was drawn from two available datasets
of Campus [53] and EPFL [15]. Besides, we have also collected 12
video groups containing 46 sequences, with each group containing
three to four views. To enrich the diversity of the collected data,
different from previous videos captured by fixed cameras, these
videos are collected with four wearable cameras, i.e., GoPro, by
covering an overlapped area present with multiple people from
significantly different directions, e.g., near 90-degree view-angle
difference. We then manually synchronize them and annotate the
bounding box and the ID for each subject on all 30, 900 frames.

Table 1: Data source and statistics for the MvMHAT dataset.
Source Campus EPFL Self Collected Total
# Group 6 8 12 26
# Sequence 22 30 46 98
# View 3-4 3-4 3-4 3-4
Avg. Length 1,500 900 672 928
Avg. # Subject 14 8 10 10
Full Length 33,000 27,000 30,900 90,900

Dataset statistics and splitting. As shown in Table 1, in total,
our dataset for MvMHAT contains 26 multi-view video groups
with 98 (single-view) sequences. Each video group contains several
temporal-synchronized videos with multiple views, e.g., 3 – 4 views.
The average length of each sequence is 928 frames, and in average
ten subjects appear in each video. The dataset, in total, contains
over 90 thousand frames. We further split the dataset into training
and testing datasets, each of which contains 13 video groups, and
the ratio of frames between the training and the testing datasets is
about 2:1. To guarantee the diversity of the testing data, the testing
videos contain the videos from Campus, EPFL, and Self collected.

Evaluation metrics. MHT metrics: We apply the commonly
used MOT metrics for the single-view tracking performance evalu-
ation as in MOT Challenge [32], including multiple object tracking
precision (MOTP) and multiple object tracking accuracy (MOTA)
proposed in [4]. A key task of the MvMHAT task is to associate and
track the same subject over time. We are more concerned about the
ID related metrics [40] – ID precision (IDP), ID recall (IDR), and ID
F1 measure (IDF1) in evaluation.
MHA metrics: We further apply the metrics for cross-view associ-
ation evaluation, i.e., AIDP, AIDR, and AIDF1, by expanding the
cross-view association metrics in [18, 19]. Specifically, AIDP and
AIDR denote the multi-view subject association precision and re-
call, respectively. Given the subject IDs in all views, we take two
views each time and compute the pairwise subject matching per-
formance as in [18, 19], whose average on all view pairs is used
as a multi-view association metric. Based on AIDP and AIDR, the
association F1 score is computed as AIDF1 = 2×AIDP×AIDR

AIDP+AIDR . Follow-
ing [4, 18], we apply multi-view multi-human association accuracy
MHAA = 1 −

∑
𝑡 (MS𝑡+FP𝑡+2MM𝑡 )∑

𝑡 𝑁𝑡
, where MS𝑡 , FP𝑡 , MM𝑡 are the

false negative, false positives, and mismatched pairs, respectively,
and 𝑁𝑡 is the total number of subjects in all views, at frame 𝑡 .

Overall metrics: For the overall performance evaluation ofMvMHAT
problem, we take a simple average and get the MvMHAT F1 score,
i.e., MHAT.F1 = mean(IDF1, AIDF1) and MvMHAT accuracy score,
i.e., MHAT.Acc = mean(MOTA, MHAA).

5 EXPERIMENTAL RESULTS
5.1 Comparison Results
Baseline methods. As discussed above, we actually did not find
existing methods that can directly handle our MvMHAT problem
for comparison. Therefore, we try to include sufficient related ap-
proaches with necessary modifications for comparison.
•We first select three state-of-the-art MOTmethods for single-view
videos, including CenterTrack [62], Tacktor++ [3] and TraDeS [48]
for comparison.
•We also include a multi-target multi-camera tracking (MTMCT)
method DeepCC [41] for comparison. Note that, DeepCC is used
to handle the human tracking and re-identification (re-id) using
multiple cameras covering different areas. We modify it to handle
the proposed MvMHAT following the deep re-id features and BIP
based correlation clustering method used in DeepCC.
• Besides, we also take the approach CVMHT in [19] as a com-
parison method, which takes pairwise-view videos as input and
cannot directly handle our problem with multiple (≥ 2) views. We
divide the video groups in our dataset into pairwise video pairs and
evaluate CVMHT on each pair, respectively.

For a fair comparison, we use the same human detections pro-
vided by a commonly used detector [50], for all the comparison
methods and the proposed method. We also reserve the results pro-
vided by Tacktor++ and TraDeS using the private detector, which
will be shown in the following Section 5.1. We clarify that all the
networks in the comparison methods are the public version trained
on the original training dataset. To be relatively fair, we do not re-
train them because all these methods need supervision of labeled
data, which is not used in our self-supervised method.

Table 2 shows the comparative results of our methods with the
baseline methods. For the single-view MOT methods, i.e., Track-
tor++, CenterTrack and TraDes, we first evaluate the over-time
tracking performance using the standard MOT metrics. We can see
that the state-of-the-art approach TraDes with the private detector
provide the best MOTA score among all competitors. Note that,
MOTA and MOTP mainly focus on the object detection accuracy
and precision during tracking [36]. On the contrary, the ID-based
metrics, i.e., IDP, IDR and IDF1 evaluate the ID association and con-
sistency over time. This paper is more concerned about the latter.
We can see that the proposed method outperforms all the above
methods in IDF1 score. We then show the cross-view association
results in the middle of Table 2. We know that the single-view MOT
methods only handle the tracking in each video but not including
the cross-view association. For comparison, we additionally help
them by providing the ground-truth IDs for the subjects across
different views when they appear in each video for the first time.
The over-time tracking on each video can propagate the IDs to sub-
sequent frames, which we can use to associate the subjects across
views and over time. From the first five rows, we can see that the
cross-view association performances provided by the single-view
MOT methods are poor even with the above help. The main reason



Table 2: Comparative results of different methods on the proposed MvMHAT benchmark.

Method Over-Time Tracking Cross-View Association Overall
IDP IDR IDF1 MOTP MOTA AIDP AIDR AIDF1 MHAA MHAT.Acc MHAT.F1

Tracktor++ [2] 54.2 40.1 46.1 79.4 66.5 34.3 14.0 20.5 37.1 51.8 33.3
CenterTrack [62] 44.3 33.5 38.1 79.2 63.5 29.7 9.1 13.9 34.1 48.8 26.0
TraDeS [48] 46.7 43.2 44.9 77.5 69.5 32.4 14.0 19.6 36.0 52.8 32.2
CenterTrack [62] (Private) 43.8 33.7 38.1 79.2 63.1 31.9 9.3 14.4 34.3 48.7 26.2
TraDeS [48] (Private) 53.9 50.5 52.1 77.4 70.8 38.7 19.7 26.1 38.5 54.6 39.1
DeepCC [41] 40.8 24.6 30.7 82.2 47.5 11.2 2.9 4.6 30.4 39.0 17.6
CVMHT [19] 51.1 36.2 42.4 82.3 54.1 32.8 26.4 29.2 41.7 47.9 35.8
Ours 53.0 51.9 52.4 79.2 64.7 53.0 46.4 49.5 51.7 58.2 51.0

Table 3: Ablation study of different variations of our method.

Method Over-Time Tracking Cross-View Association Overall
IDP IDR IDF1 MOTP MOTA AIDP AIDR AIDF1 MHAA MHAT.Acc MHAT.F1

w/o Training 34.2 34.6 34.4 78.3 57.2 23.3 15.1 18.3 27.7 42.5 26.4
w/o LSSIM 52.7 51.7 52.2 79.2 64.5 56.4 41.7 48.0 49.2 56.9 50.1
w/o LTSIM 49.4 48.6 49.0 79.2 65.3 54.7 36.1 43.5 46.2 55.8 46.2
w/o Association 63.2 61.3 62.2 79.4 67.7 22.3 5.1 8.3 30.1 48.9 35.2
w/o Tracking 59.1 42.0 49.1 79.8 42.5 55.8 44.4 49.4 47.6 45.0 49.2
w/o Relax 48.1 47.4 47.8 79.1 64.1 43.9 24.9 31.8 39.2 51.6 39.8
w/o Margin 31.2 29.6 30.4 79.0 61.0 24.2 11.0 15.2 29.0 45.0 22.8
w/o Temperature 38.0 38.1 38.1 78.6 59.7 16.6 9.6 12.2 26.6 43.2 25.1
Ours 53.0 51.9 52.4 79.2 64.7 53.0 46.4 49.5 51.7 58.2 51.0

is that, without the cross-view re-association mechanism during
tracking, the association will fail once the subject ID switch occurs.

Multi-view tracking approaches, i.e., DeepCC and CVMHT, also
perform not very well particularly for the cross-view association.
This is because DeepCC is mainly used for long-term trajectory
re-identification but not good at synchronously associating the sub-
jects across views simultaneously. For CVMHT [19], it emphasizes
the subject spatial distribution but simplifies the appearance for
subject matching, which is not very suitable in our setting. For the
overall performance metrics, i.e., MHAT.Acc, MHAT.F1, our method
achieves the best performance on both of them.

5.2 Ablation Study
• w/o Training: We directly use the Resnet-50 [22] pre-trained on
ImageNet [11] to extract features instead of the one using the self-
supervised training in our method.
• w/o LSSIM: Remove the SSIM loss LSSIM in Eq. (12).
• w/o LTSIM: Remove the TSIM loss LSSIM in Eq. (13).
• w/o Association: Remove the association module during tracking,
and generate the association results when the object appears the
first time.
• w/o Track: Remove the collaboratively tracking module, and
implement the tracking on one view to obtain the subject ID in
other views by cross-view association.
• w/o. Relax: Replace the relaxed margin by a strict one namely set
𝑚 = 1 in Eq. (11).
• w/o Margin: Remove the margin namely set𝑚 = 0 in Eq. (11).
• w/o Temperature: Remove the temperature mechanism namely
we set 𝜏 = 1 in Eq. (3).

Effectiveness of self-supervised loss. As shown in Table 3,
we can see that ‘w/o Training’ has a poor performance, which shows
the challenge of the MvMHAT task and the importance of proposed
self-supervised training. Our loss functions enable the network to

unsupervisedly find the potential characteristics of data. ‘w/oLSSIM’
and ‘w/o LTSIM’ show the effectiveness of LTSIM loss function and
LSSIM function. LSSIM only considers the relationship between
pairwise frames, which leads to the drop of performance. Similarly,
LTSIM focuses on global information and only considering it does
not perform as well as the proposed combined loss.

Evaluation of tracking & association mechanism. We can
see from Table 3 that ‘w/o Association’ provides very promising
tracking results. It can be explained that, without considering the
cross-view association, the method under ‘w/o Association’ can
avoid more ID switches during tracking. This can be regarded as an
upper bound of our method only for tracking, which, however, nat-
urally generates a poor association performance. From comparing
the results of ‘w/o Tracking’ and ‘Ours’, we are surprised to find that
with the aggregation of tracking, our method not only improves the
performance of over-time tracking but also the cross-view associa-
tion. It indicates that the temporal tracking can be used as a favor
for association. Overall, the integration of collaborative tracking &
association mechanism generates the best results.

Influences of setups. The results generated by ‘w/o Relax’ and
‘w/o Margin’ verify the explanation in Section 3.3. In ‘w/o Relax’, we
assume I in Eq. (11) to be an identity matrix. However, with frequent
occlusions and out-of-view of subjects, frames from different views
or different points of time hardly share the exact same people.
In this case, an over-constrained I tends to give the unmatched
people incorrect matchings. On the contrary, ‘w/o Margin’ means
the strongest relaxation of I, which seems to give a too weak penalty
for incorrect matchings. Finally, in a real-world scenario, the spatial-
temporal distribution of people is always ruleless, which leads to
the different number of people in different views at different time.
However, softmax has different soften abilities when the input size
changes, which makes these output values to be affected by the
number of people. This way, the temperature in softmax is beneficial.
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Figure 4: Samples of the qualitative results.

5.3 Qualitative Evaluation
Figure 4(a) shows a long-term tracking result of Tracktor++. We
can see that two players are practicing baseball in the white dotted
area in (1). However, because of the frequent moving of the player
A in (2), and comings and goings of pedestrians in (3), the player B
is occluded frequently. Thus, the single view MOT methods have to
always try to match B with all the tracklets, which leads to lots of
incorrect ID switches, e.g., in (4). As shown in Fig. 4(b), our method
leverages the complementary characteristic of multiple views, and
we ensure that any people can be observed in at least one view at
a time. The integration of multi-view tracklets makes good use of
both temporal and spatial information. The proposed MvMHAT
scheme, to some extent, can help track the re-appearing detections
that cannot be matched by the tracking module, while the continual
tracking can help associate the subjects that cannot be matched
by the association module. This way, a spatio-temporal connection
is established for all observed people, which has the potential to
better handle the long-term tracking. In Fig. 4(c), people are walking
and interacting with each other in various activities. Based on the

results of MvMHAT, we can capture the details of every subject
from all-around perspectives. This demonstrates the potential of
the proposed MvMHAT for broad applications, e.g., sports games and
outdoor surveillance, which aim to capture both global and local
details of involved people.

6 CONCLUSION
In this paper, we have studied a relatively new problem –MvMHAT,
which is different from the existing MOT problem and has many
applications. For fully excavating the peculiarity of MvMHAT, we
model the problem as a self-supervised learning task and propose
an end-to-end framework to handle it. To promote the study on
this new topic, we have also built a new MvMHAT benchmark for
performance evaluation. Experimental results verify the rationality
of our problem formulation, the usefulness of the proposed bench-
mark and the effectiveness of our method.
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