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ABSTRACT
Compared to a single fixed camera, multiple moving cameras, e.g.,
those worn by people, can better capture the human interactive
and group activities in a scene, by providing multiple, flexible and
possibly complementary views of the involved people. In this set-
ting the actual promotion of activity detection is highly dependent
on the effective correlation and collaborative analysis of multiple
videos taken by different wearable cameras, which is highly chal-
lenging given the time-varying view differences across different
cameras and mutual occlusion of people in each video. By focusing
on two wearable cameras and the interactive activities that involve
only two people, in this paper we develop a new approach that
can simultaneously: (i) identify the same persons across the two
videos, (ii) detect the interactive activities of interest, including
their occurrence intervals and involved people, and (iii) recognize
the category of each interactive activity. Specifically, we represent
each video by a graph, with detected persons as nodes, and propose
a unified Graph Neural Network (GNN) based framework to jointly
solve the above three problems. A graph matching network is de-
veloped for identifying the same persons across the two videos and
a graph inference network is then used for detecting the human
interactions. We also build a new video dataset, which provides a
benchmark for this study, and conduct extensive experiments to
validate the effectiveness and superiority of the proposed method.
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1 INTRODUCTION
In recent years, video-based interactive and group activity analysis
has attracted the interest of many researchers in the computer
vision and multimedia communities. Most existing methods are
developed for the videos captured by a single fixed camera, which
can only cover specified and limited regions. In many scenarios
with many people around, e.g., in an outdoor gathering, it can
be difficult to identify the activities of interest over time from a
single video taken by a fixed camera with pre-specified view – some
involved people, referred to as subjects in this paper, may be out
of the camera view or occluded by others from time to time. This
limitation can be well addressed by using multiple moving cameras,
such as cameras worn by several people in or near the scene [10–12].
For example, in an outdoor gathering, security personnels can wear
cameras such as Google Glass or GoPro and walk around to record
what they see over time. The resulting multiple wearable-camera
videos can provide much more information than a fixed-camera
video for interactive and group activity analysis.

To better observe a group of people on the ground, the location
and perspective of cameras are very important. Figure 1(a) and 1(b)
show the same scene simultaneously captured by two cameras from
different locations and views. The same scene captured from View-1
(top) and View-2 (bottom) is totally different. In the red bounding
box in Figure 1(a), we can not identify the ongoing activity because
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Figure 1: An illustration of our problem. Left: Highlighted
region focused on the interactive subjects (a-b). Right:
Whole scenewithmore subjects besides the interactive ones.
The same subjects in different views are indicated with
identical-color boxes (c-d).

of the mutual occlusion. From another view as shown in Figure 1(b),
we can clearly observe the interactive activity of hand shaking be-
tween two subjects. This indicates that the multiple videos from
different-view cameras may provide complementary information
for better activity analysis. The use of multiple wearable cameras
not only generates videos from different views, but also from time-
varying views which can better capture the activities of interest.
In this paper, we propose to correlate these videos and conduct
combined video analysis for human interaction detection, by con-
sidering the complexities caused by cross-video view difference
and within-video mutual occlusions, as shown in Figure 1(c-d).

More specifically, we propose to address the following three
important tasks simultaneously: Cross-view person identifica-
tion (Task I) – identifying the same persons across multiple videos
captured by different wearable cameras. Human interaction de-
tection (Task II) – detecting the human interactions of interest,
including their occurrence intervals and involved subjects.Human
interaction recognition (Task III) – recognizing the category
of each detected interactive activity. The mutual dependence and
promotion of these three tasks motivate the design of a unified
framework to address them simultaneously. On one hand, accurate
cross-view person identification (Task 1) is essential for combined
video analysis for better detecting and recognizing the human inter-
actions from multiple videos (Tasks II & III). On the other hand, the
correct detection and recognition of human interactions (Tasks II
& III) can also benefit the cross-view person identification (Task I).
Moreover, the detection and recognition of human activities (Tasks
II & III) in a video are well known to be two highly correlated tasks.

For simplicity, in this paper, we focus on two wearable-camera
videos and the interactive activities that only involve two subjects,
e.g., hand shaking. Compared to many existing works, our problem
formulation is different in two perspectives. First, most researches
on human-human interactions (HHI) [32, 35, 37, 46] were predomi-
nantly focused on recognition instead of detection. In these works,
HHI category labels are usually assigned to a whole video without
specifying the occurrence intervals, i.e., the starting and ending

time of each interaction. In this paper, we not only recognize the
HHI category, but also detect the starting and ending time of each
activity. Second, in most of the prior works, only two subjects that
perform the HHI are present in the scene. In this paper, we assume
the presence of more subjects besides the two involved in HHI in
the scene, which fits better to the real scenarios. This significantly
increases the chances of within-video mutual occlusions and needs
more robust algorithms to identify the subjects involved in HHI.

In this paper, we propose a Graph Neural Network (GNN) based
framework to jointly address the above-mentioned three tasks.
Specifically, given two wearable-camera videos capturing a group
of people with HHIs, we first model all the subjects in a video as a
graph, in which each node represents a subject. We then propose
a graph matching network by combining two videos to address
the Task I of cross-view person identification. We further use a
graph inference neural network to learn i) an adjacent matrix that
represents the interactive relationship among all subjects (Task II)
and ii) the node labels that represent the interaction category of each
subject (Task III). Extensive experiments on the newly proposed
video dataset validate the effectiveness of the proposed method.

This paper makes three major contributions: 1) This is the first
work to propose and study the cross-view human identification and
HHI detection in crowded multi-person scenes, which advances the
human activity analysis to a more realistic scenario. 2) We study
the mutual dependence and promotion of the above three tasks
and propose a cascaded GNN to simultaneously achieve the graph
matching and graph inference, implemented in an end-to-end way.
The proposed Graph Inference Network (GIN) with dual-branch
architecture can well integrate the information from two input
videos. We jointly match the subjects, detect and recognize the
interaction to form our multi-task model, while only a single task
was addressed in previous works. 3) We construct a new multi-view
video dataset and use it to evaluate the proposed method. We have
released this new dataset to public1.

2 RELATEDWORK
2.1 Cross-View Person Identification
Cross-view person identification (CVPI) is a most fundamental
problem in multi-view video analysis, which is to identify the same
persons across the temporally synchronized videos taken by mul-
tiple (wearable) cameras [50]. Appearance is the most important
and effective feature for object matching [31, 42, 43]. Motion fea-
ture can be also used for CVPI, however, its effectiveness is lim-
ited because of the view difference. Zheng et al. [50] extracted the
view-invariant motion features by supervised deep learning and
showed the effectiveness of using such features for CVPI. Liang et
al. [20, 21] integrated the human pose features for CVPI by propos-
ing a confidence-weighted human pose matching method, which
can address the highly inaccurate 3D human pose estimation. Pre-
vious works only handle the scene containing one person without
other pedestrians crossing through in the video [21, 50]. Differently,
this paper aims to identify all the same persons across two videos
with multiple people, which is very challenging due to the subjects’
mutual occlusions and interactions.

1https://github.com/RuizeHan/CVID
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2.2 Human-Human Interaction Recognition
Human activity detection is an important task in computer vision
and multimedia computing. According to the number of partici-
pants, it can be divided into (single-) human action [18, 36], human-
human interaction (HHI) and group event recognition/detection.
Recently, a large proportion of works pay attention to the action
and group event recognition. However, the study on modeling the
interactions between two humans, i.e., HHI, is relatively fewer. Most
of existing HHI methods and datasets focus on social or surveillance
domains. Ryoo et al. [32] recognized the HHI in the videos taken
from a fixed slope-angle top viewpoint with limited mutual occlu-
sions. In [37], a dataset of human interaction clips with complemen-
tary pose data was introduced, where the videos are also captured
from a fixed viewpoint and static background. Additional depth data
is available in [46] for HHI recognition, in which the interactions
fully occupy the frame. Some other researchers also focused on the
HHI in TV shows [28], films [25], YouTube videos [14, 26, 49], and
multi-view videos [27]. Most research on HHI has predominantly
focused on recognition rather than detection [35], in which only the
interactive humans appear in the video and the problem is to recog-
nize their interaction types. Differently, we study a more realistic
scene of detecting HHI in crowded multi-person scenes.

2.3 Multi-Person Video Analysis
Currently, most works on multi-person video analysis are focused
on group event recognition, which aims to identify the ongoing ac-
tivity involving a group of people. Classical graphmodels have been
used for handling this problem [1–3, 16, 33, 40], resulting in many
techniques, e.g., Markov Random Fields (MRFs) [40], Hierarchical
Random Field (HiRF) [2] and spatial-temporal-aware graph [1, 33].
Thesemethodsmodel the individual actions and the group events by
capturing the mutual relations among the people, e.g., human-level
interactions [3], group-level interactions [1, 33] or multi-level inter-
actions [16]. More recently, deep learning based models are widely
applied for group event recognition [3, 6, 13, 23, 30, 38]. Among
them, Recurrent Neural Networks (RNN) is widely used [6, 30, 38],
while other networks like Hierarchical Relational Network [13] and
Graph Convolutional Network (GCN) [23] have also been used for
this problem. Note that, group event recognition identifies the over-
all activity of all the people, which is different from our problem of
HHI detection in crowded scene. Also, all the previous works on
group event recognition use a single fix-view video.

2.4 Graph Neural Network
Graph Neural Network (GNN) is an emerging research topic which
has attracted extensive interest in the community [9, 41]. GNN inte-
grates the advantages of classical graph models and popular neural
networks with a strong relation representation and feature learn-
ing ability. GNN has been used in many tasks involving relation
inference, such as human-object interaction (HOI) [7, 29], scene
understanding [19, 24], human action localization [48] and human
gaze communication [22]. GNN was also used to model the differ-
ent parts of a human or other objects for action recognition [45]
and object tracking [8]. More recently, several works [39, 47] were
proposed to solve the deep graph matching problem, with verified
the effectiveness in both theory and applications. Inspired by these

efforts, we use the GNN to solve the proposed problem in this paper.
More specifically, we employ a graph matching network to achieve
the cross-view subject matching and a graph inference network to
parse the interactive relation among the subjects.

3 OUR APPROACH
We design a unified graph neural network to jointly address the
three tasks. Specifically, as shown in Figure 2, all the subjects are
represented by graph nodes, and the HHI relations are represented
by the adjacency matrix of graph. We use a Graph Matching Net-
work (GMN) to match the subjects across the two views and a
Graph Inference Network (GIN) to infer the interaction relation
and category of each subject. We introduce the model formulation
in Section 3.1 and the detailed network architecture in Section 3.2.

3.1 Model Formulation
Graph Representation. We first define a complete graph G =

(V, E) to represent a multi-person scene at a frame. The graph
node v ∈ V takes unique values from {1, · · · ,|V|}, representing all
the subjects in the frame. The graph edge e = (v,w) ∈ E indicates
the connectivity of two nodes v,w , representing all the potential
HHI relations. For node v , its node representation is denoted by
a V -dimensional feature vector: xv ∈ RV. Similarly, the edge rep-
resentation for edge e = (v,w) is denoted by an E-dimensional
feature vector: xv,w ∈ RE. Each graph node v ∈ V has an output
state lv that takes a value from a set of HHI type labels. We also
define an adjacency matrix A ∈ {0, 1} |V |×|V | to represent the in-
teraction relation over our complete graph G, where each element
av,w represents the connectivity from node v tow .

Given a pair of synchronous frames in two videos capturing a
scene from different views, we first construct two graphs G1 =
(V1, E1), G2 = (V2, E2) as discussed above. As shown in Fig-
ure 2(b), we use a graph matching network to establish node-to-
node correspondence between G1 and G2, which is denoted by a
permutation matrix P ∈ {0, 1} |V

1 |× |V2 | (Task I). Besides graph
matching, for each graph Gs(s = 1, 2), our model also aims to learn
the adjacency matrix As and the interaction labels {lv }v ∈Vs , i.e.,
the interaction types, of all the graph nodes Vs simultaneously
(Task II, III). In the following, we describe the above two steps.

Graph Matching Network. Given a pair of frames from differ-
ent views, we first get the bounding box of each human (subject) by
performing a human detector or using the ground-truth detections.
As discussed above, each subject is represented by a graph node.
We adopt a Convolutional Neural Network (CNN) for bounding
box feature extraction, e.g., fv denotes the initialized feature vector
of v-th bounding box, where v ∈ Vs(s = 1, 2). As shown in Fig-
ure 2 (b), we use the intra-graph and cross-graph node embedding
described in [39]. Specifically, the intra-graph node embedding is
adopted as,

x̃v = GConv(x̃v ), v ∈ {V1,V2}, (1)

where GConv : RV → RV denotes the graph convolution operation.
For a pair of graphs G1 = (V1, E1),G2 = (V2, E2), the cross-graph
node embedding CrossConv : R2V → R2V is adopted as,

{x̃v , x̃u } = CrossConv(x̃v , x̃u ),v ∈ V1,u ∈ V2. (2)
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Figure 2: Framework of the proposed method. (a) A pair of synchronized frames from the given video pair and their corre-
sponding graph representations. For simplicity, we only illustrate the graph structure of selective four subjects in each frame,
where subjects v1 and v2 are under interaction of waving. (b) (c) Illustration of the proposed GMN and GIN.

As shown in Figure 2 (b), we take initial x̃v as fv and alternately
adopt GConv, CrossConv, GConv for graph node embedding.

After getting the embedded node representation x̃v , x̃u using
the above embedding model, we consider calculating the affinity
matrix S ∈ R+

|V1 |×|V2 |
containing the affinity score as

Sv,u = exp
(
x̃⊤vMx̃u

τ

)
, v ∈ V1,u ∈ V2, (3)

where x̃v , x̃u ∈ RV×1, andM ∈ RV×V contains learnable weights to
calculate the affinity matrix S. τ > 0 is a hyper-parameter to adjust
the discriminative ability. Finally, we adopt the Sinkhorn opera-
tion to get the permutation matrix prediction P̂ = Sinkhorn(S) [5].
Sinkhorn operation takes any non-negative square matrix and out-
puts a doubly-stochastic matrix, whose summation of each row or
each column is one.

In the training process, the matrix cross-entropy loss is used for
calculating the matching cost

LGMN = LP(Pgt, P̂), (4)

where Pgt and P̂ are the ground-truth and predicted permuta-
tion matrix. In the testing process, we apply the Hungarian algo-
rithm [15] on permutation matrix prediction P̂ as a post processing
step to discretize the output into a binary permutation matrix P.

Graph Inference Network. For simplicity, we first describe
the graph inference network (GIN) in terms of one branch. Given a
graphV = V1 (orV2), the GIN updates the adjacency matrix A
to infer the current interaction graph structure, according to the
node and edge representations

a
(k )
v,w = σ (FA(x̄

(k−1)
v , x̄(k−1)

w , x̄(k−1)
v,w )),v,w ∈ V, (5)

where the connectivity matrix A(k ) = [a
(k)
v,w ]v,w ∈ R |V |×|V | en-

codes current interaction relation predictions. FA : R2V+E → R1 is
a connectivity readout network that maps an edge representation
into the connectivity weight and σ is an activation function. Be-
sides, in the node update phase, we update node representations
x̄v via considering all the incoming node and edge information
weighted by the corresponding connectivity

x̄(k )v = σ (
∑

w
a
(k−1)
v,w FV(x̄

(k−1)
v , x̄(k−1)

w , x̄(k−1)
v,w )), (6)

where FV : R2V+E → RV represents a node update network. As
shown in Figure 2(c), we take x̄(0)v = fv as the initial node repre-
sentation. We iteratively update the adjacency matrix and node
representation for K iterations then obtain Â = A(K ) and x̄(K )

v .
Next, as shown in Figure 2(c), given the cross-view subject match-

ing results, we concat the node features representing the same
subject in two views and get the syncretic representations yv

yv = concat(x̄(K )
v1 , x̄

(K )
v2 ),v1 ∈ V1,v2 ∈ V2, (7)

wherev1,v2 denote the same subjectv appearing in two views, and
the cross-view subject matching results are obtained by GMN. We
then use an LSTM function layer to update the node representation
by considering temporal information.

htv = FLSTM(ytv |h
t−1
v ), (8)

where ytv denotes the input of the LSTM at frame t , and htv denotes
the corresponding hidden state considering the previous informa-
tion ht−1

v . Finally, we use a readout function FR(·) followed by an
activation function σ to output the interaction labels of each subject

l̂v = σ (FR(htv )), (9)

from which we can obtain the node label matrix L̂ = [l̂v ]v ∈ R |V | .
For GIN, we define the following loss

LGIN =
∑
s=1,2

LA(As
gt, Â

s
) + LL(Lgt, L̂), (10)

where the loss functions LA and LL calculate the distance between
the predicted and ground-truth adjacent matrix/node labels. Âs

and As
gt(s = 1, 2) denote the predicted and ground-truth adjacency

matrix in two branches and L̂ and Lgt denote the node labels.
We provide an example to intuitively illustrate the proposed

method as shown in Figure 2. Given a pair of synchronized video
frames, we represent all the subjects in each frame as a complete
graph by taking each subject as node and the relation between two
subjects as edge. Then the initial graphs are first imported into
the GMN 2(b). The network iteratively updates the graph node
representation by intra-graph and inter-graph embeddings using
Eq. (1) and Eq. (2), respectively, as shown in the left of Figure 2(b).
After that, the similarity of every two nodes from different graphs
is calculated by Eq. (3) to compose the affinity matrix. Through the
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Sinkhorn operation, the predicted permutation matrix is used to
compute the cross-entropy loss against the ground-truth permu-
tation matrix using Eq. (4). The matching results is used for the
following GIN 2(c), which also takes the initial graphs as input. As
shown in the left of Figure 2(c), the networks iteratively update
the adjacency matrix (note the change of edge thickness) and node
representation (note the change of node gray-levels) using Eq. (5)
and Eq. (6), respectively. Next, we combine the updated node rep-
resentations of the same subject from different videos (using the
matching results) for the interaction category recognition in the
right of (c). For this purpose, we use an LSTM function layer Eq. (8)
to capture the temporal information followed by a fully connected
layer Eq. (9) to predict the final interaction labels. The proposed
method can be summarized in Algorithm 1.

Algorithm 1: Human identification and HHI detection:
Input: Gs = (Vs , Es ) (s = 1,2); pre-set parameters.
Output: The permutation matrix P̂, the adjacency matrix As and

the interaction labels {lv }v∈Vs (s = 1,2).
1 Divide the video segment into clips of T frames.
2 for t = 1 : T do
3 Build the two graphs G1 and G2 on frame t of the two clips.
4 Get the node embedding for all nodes in G1 and G2 using

GConv, CrossConv, GConv in Eqs. (1, 2) alternately.
5 Calculte the affinity matrix by Eq. (3) and learn M.
6 Adopt the Sinkhorn operation to get P̂.
7 for s = 1 : 2 do
8 for k = 1 : K do
9 Update the adjacency matrix A(k )

s by Eq. (5).
10 Update node representations x̄(k )s by Eq. (6).

11 Connect the matched x̄(K )
s by Eq. (7) using P̂.

12 Update the node representation by the LSTM function of Eq. (8).
13 Output the interaction labels by the readout function of Eq. (9).

3.2 Detailed Network Architecture
Node and Edge Representation. We use the annotated detection
result of each subject. For each node v ∈ V , the initial feature fv
combines 1) appearance feature: extracted from the corresponding
bounding box using a pre-trained person re-identification (Re-ID)
network [51]), 2) pose feature: extracted from the corresponding hu-
man with an existing pose estimation approach [4], and 3) location
feature: a 6-d subject position information, i.e., the coordinates of
the up-left corner, the center points and the bottom-right corner of
the corresponding bounding box. In graph matching network, we
directly use the appearance feature as the node representation. In
graph inference network, we combine the pose feature and location
feature because the appearance feature is not very useful for human
interaction detection and recognition. Moreover, similar to [29, 39],
to decrease the amount of parameters and make the dimensions
of different features comparable, we use a post processing to com-
press the pose features into 8-d and combine it to the 6-d location
feature as initial node feature. For an edge e ∈ E, it is represented
by combining the features of the two linked nodes.

Loss Functions. The matrix cross-entropy loss between two
matrices used in Eq. (4) is defined as

L(X,Y) = −1⊤(X ⊙ logY + (1 − X) ⊙ log(1 − Y))1 (11)

where we assume X,Y ∈ RK1×K2 , 1⊤ ∈ R1×K1 , 1 ∈ RK2×1, and ⊙

denotes the element-wise multiplication operation. For the loss of
graph inference network in Eq. (10), we use L1 loss function for
LA and the cross-entropy loss for LL. The total loss function of the
whole framework is defined as

L = λ1LGMN + λ2LGIN, (12)

where LGMN and LGIN are the graph matching network loss and
the graph inference network loss, respectively. We use two param-
eters λ1 and λ2 as weight coefficients.

Graph Network Implementations. The adjacency matrix up-
date functions FA in Eq. (5) is implemented by a four-layer convo-
lutional network. The node update function FV in Eq. (6) is imple-
mented by the fully-connected-layer and gated recurrent unit (GRU)
network. We use a single-layer BiLSTM as the function FLSTM in
Eq. (8). The readout function FR in Eq. (9) is implemented by the
fully-connected-layer network. Besides, the activity function σ in
Eq. (5) and (6) is the sigmoid function, and in (9) is ReLU function.
Our model is implemented by PyTorch on an NVIDIA GTX-2080Ti
GPU. During training phase, the learning rate is set to 1 × 10−3,
and decays to 0.1 times every 10 epochs. The training process takes
20 epochs to converge with a batch size of 16. The parameters τ
in Eq. (3) is set to 5 × 10−3. The parameters λ1 and λ2 in Eq. (12)
are set to 1 and 0.5, respectively. The iterations K in GIN is set to
2 in our experiment. The training/testing dataset splitting will be
discussed in Section 4.1. For training the network, to alleviate the
unbalance of training samples, we only sample the interval from
the starting frame to the ending frame of an interaction. Each video
pair is imported into the network clip by clip with fixed length e.g.,
8 frames, in our experiments. The GConv and CrossConv in GMN
and the functions of Eqs. (5, 6, 8, 9) in GIN are implemented by
neural networks, whose parameters are learnable. The proposed
GMN and GIN are trained in an end-to-end way.

Temporal Smoothness. Although the GNN based framework
discussed above has considered the temporal information of the
sequence, the frame-wise interaction detection and recognition out-
put may provide noisy predictions for some frames. For example,
the network may wrongly predict the interaction category for a
small number of frames in the interval of an interaction, or predict
an interaction during the interval without any interaction. To re-
duce noise and preserve the prediction continuity along a sequence,
we design a simple yet effective long-short-term sliding window
based approach for temporal smoothness. A short-term sliding win-
dow, e.g., 6 frames, is used to correct the error predictions on single
frames. When an interaction label prediction on one frame is differ-
ent from the others in this window, it will be corrected. Similarly,
we also use a long-term sliding window, e.g., 30 frames, to correct
the error predictions on the short clips. Using this strategy, the tem-
poral interaction detection and recognition can be more continuous
between frames and therefore, more accurate. We will show the
effectiveness of this post processing in the experiment section.
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Figure 3: Example frames of our dataset. Same human objects across two views are marked by boxes with the same color.

4 EXPERIMENTS
4.1 Dataset and Metrics
Data Collection.We do not find publicly available datasets with
multi-view multi-subject videos with ground-truth annotations for
HHI detections. Therefore, in this work we collect a new video
dataset using multiple GoPro wearable cameras for performance
evaluation. This dataset contains five common categories of social
HHIs: (hand) shaking, hugging, exchanging, waving, and patting.
We invite 10 subjects to randomly walk or stand in the scene, and
two of them wear GoPro cameras overhead to collect videos. The
locations of the two cameras are always separated and their view
directions differ by more than 90 degrees, which ensures the two
collected videos to provide complementary information for sub-
ject/activity detection and recognition. Given large view difference,
the background in the two videos can be totally different. The videos
are recorded in a way that two selected subjects (not the camera
wearers) perform one of the five interactions at a time, while all the
other subjects are free to move or stop, resulting random mutual
occlusions in these videos. These videos also contain no-interaction
intervals (with random lengths) between two HHIs. We manually
synchronize the pair of videos taken by the two GoPros such that
corresponding frames between them are taken at the same time.
For dataset annotation, we hire three expert volunteers to inde-
pendently annotate the starting and ending frames of each HHI
and then take their averages as the ground truth interval of the
HHI detection. The corresponding involved subjects as well as the
interaction category of each HHI are also annotated. The bounding
boxes of all the subjects are also labeled by outsourcing to a profes-
sional company. Example frames and our ground-truth annotations
are shown in Figure 3, from which we can see that these paired
wearable-camera videos do provide complementary information for
HHI analysis. We can also see that the frequent mutual occlusions
and perspective difference bring challenges to our tasks.

Data Statistics. In total, we collect 75 pairs of videos with 48,600
frames in our dataset. Specifically, as shown in Table 1, the collected
75 pairs of videos contain the above-mentioned five categories of
HHIs. Each pair of videos contain two randomly selected HHIs (with
same or different categories) occurred over non-overlapped time
intervals. There exist random-length no-interaction intervals before
the first HHI, after the second HHI and between the two HHIs. The
second column of Table 1 shows the total number of frames in
these videos. We annotate each frame with bounding boxes of all
the subjects and 367,191 human bounding boxes (avg. 7.6 per frame)
are annotated in total. We also annotate the interaction interval

(the starting and ending frames), as well as the involved subjects
and corresponding interaction labels frame by frame, resulting in
11,700 HHI labels (frame level) in total. Note, the data volume for
different HHI categories are balanced. As shown in the last three
rows of Table 1, we split the dataset into training and testing data
by 3:2 with no overlap.

Table 1: Dataset statistics and training/testing splitting.

Dataset # Video pair # Frame # Subject # Inter.
shaking 15 8,600 64,194 2,330
hugging 15 10,310 77,535 2,640
exchange 15 10,750 84,525 2,210
waving 15 8,870 66,306 2,390
patting 15 10,070 74,631 2,130
training 45 31,030 233,847 7,180
testing 30 17,570 133,344 4,520
full 75 48,600 367,191 11,700

Evaluation Metrics. Task I: We use precision (P), recall (R)
and F1-score (F ) for evaluation. Precision P / recall R denote the
ratio of true-positivematches to all predicted-positive / real-positive
matches, respectively. F1 score F is computed as F = 2×P×R

P+R
.

Task II : 1) Temporal domain – A frame with identical pre-
dicted and ground-truth interaction label is taken as true-positive
detection. We compute the ratio of true-positive detections to the
numbers of frames with predicted and ground-truth interactions
and get the temporal-domain precision P and recall R, respectively.
We then compute F1-score (F ) based on P and R. We also use
average accuracy (A) by averaging the accuracy of temporal in-
teraction detection for all frames, including the frames with and
without interaction. 2) Spatial domain – On each frame, we use
an adjacency matrix to represent the interactive relations among
all the subjects. For a predicted adjacency matrix Â ∈ RN×N and a
ground-truth adjacency matrix Agt ∈ RN×N , where N denotes the
number of subjects. Then the spatial-domain precision P and recall

R are P =

∑
AND(Â,Agt)∑

Â
,R =

∑
AND(Â,Agt)∑

Agt
, where AND denotes

the logical function, the numerator counts true positive HHI rela-
tions, and the denominators count the predicted and ground-truth
HHI relations, respectively.

Task III: We compute the Top-1 and Top-2 classification ac-
curacy (T -1 and T -2) to evaluate the interaction category recog-
nition (classification) performance for the subjects with correct

Poster Session B2: Deep Learning for Multimedia 
& Emerging Multimedia Applications

MM '20, October 12–16, 2020, Seattle, WA, USA 

2613



spatial-temporal interaction detection. We also propose a new com-
prehensive metric – multiple human interaction accuracy (MHIA)
for Task II and Task III. Specifically, following the standard metric
MOTA (multiple object tracking accuracy) in MOT problem [17],
MHIA is computed as MHIA = 1−

∑
t (mst+fpt+fct )∑

t (dt+gt ) , where mst , fpt
are the numbers of missed (false negative), false positive subjects
for spatial-domain interaction detection at time t , fct denotes the
number of subjects with true interaction detection but false inter-
action category, and dt and gt represent the number of detected
and ground-truth subjects with interaction at time t , respectively.

4.2 Baselines
We consider following baselines for Task I:
• Chance: Randomly create the permutation matrix for matching.
• VGG + Hungary/DHN: Compute the affinity matrix by the simi-
larity between the feature vectors extracted by VGG network [34].
Adopt the Hungary algorithm [15] / Deep Hungary Network (DHN)
[44] to get the permutation matrix as the matching results.
• Re-ID +Hungary / DHN: Similar to the above methods and use the
appearance feature extracted by the pre-trained re-ID network [51].
• DL-GM / PCA-GM: Build the graph as in Section 3.1 and use a
deep learning based GraphMatching (GM) method proposed in [47]
and [39], respectively. Note, the training/testing data for DHN, DL-
GM and PCA-GM are the same as in our method.

For Tasks II, III, we do not find directly related comparative
methods. Prior HHI detection methods focus on the scene only
containing the interactive persons, which can not handle the scene
with more subjects other than the interactive ones, and identify the
interactive subjects. Differently, we found that some human-object
interaction detection methods can identify the interactive relations
among different humans/objects. We consider the baselines:
• Chance: A weak baseline that randomly assigns an interaction
label to each subject node.
• CNN + LSTM : An alternative method that uses five-layer Conv2d
network following by an LSTM for label classification, where it
only considers the temporal dynamics but no spatial structures and
predicts the subject’s activity individually.
• GPNN [29]: A human-object interaction detection method using
the GNN, which is re-trained on the proposed dataset.

4.3 Cross-View Human Identification Results
As shown in Table 2, we first evaluate the CVPI (Task I). Our full
model achieves the best performance with an F1 score of 76.5%.
Compared to the Hungary and DHN algorithm based approaches,
the proposed method performs better when using the same ap-
pearance feature from [51]. This comparison demonstrates that the
proposed graph based network can provide stronger representation
and discrimination ability for CVPI. Moreover, we can also see that
our approach gets better performance than the baseline deep graph
matching method DL-GM when using the same features extraction
method and training data. We further evaluate the matching per-
formance of our method without the graph inference network, i.e.,
‘w/o GIN’ in Table 2. We can see that the graph matching network
only performs worse than the whole framework. It can be explained

that the combination of solving human matching and interaction
detection promotes the human identification task.

Table 2: Results of cross-view person identification (Task I).

Method P (%) R (%) F (%)
Chance 10.1 14.3 11.8
VGG + Hungary 13.8 18.3 15.7
VGG + DHN [44] 14.2 20.1 16.6
Re-ID [51] + Hungary 57.1 76.0 65.2
Re-ID [51] + DHN [44] 56.7 80.5 66.5
DL-GM [47] 44.1 58.7 50.3
w/o GIN 63.5 84.5 72.5
Ours 66.9 89.3 76.5

4.4 HHI Detection and Recognition Results
As shown in Table 3, we can see that all the baseline methods pro-
duce poor results in both Task II and Task III, due to the originality
and challenging of our problem. Our full model achieves the best
performance which leads a large margin compared to the baselines.

Ablation Study.We derive the following variants of our method
to evaluate the effectiveness of our essential components:
• w single view: uses the single-view video data for training GIN
without cross-view data fusion strategy.
• w/o pose/location: removes the human pose/location feature.
• w/o temporal: removes the LSTM function FLSTM in Eq. (8) for
temporal information modeling.
• w/o A-supervision: removes the ground-truth adjacent matrix A
by unsupervisedly learning it.
• w iter-1/3: changes the iteration time K for graph learning in GIN
from 2 into 1 and 3, respectively.
• w/o smoothness: removes the temporal smoothness strategy.
• w P-GT: uses the annotated subject matching results in GIN.

For in-depth analysis, we can see that our model using single-
view video performs not very well, which is because the mutual
occlusion and background clutter in the multi-person scene dis-
turb the detection and recognition accuracy. We can also see that
both the pose and location features are effective in our model. Note
that, w/o location provides unexpected recognition results. This
is because it detects very few interactive subjects, which can be
seen from the recall score of temporal-spatial-domain interaction
detection results. We then study the architecture design of GIN.
The method w/o A-supervision which unsupervisedly learns the
adjacency matrix without using the ground-truthA obtains poor re-
sults. This is because that interaction detection is not simply about
individual feature (node representation), but also dependent on a
comprehensive inference of spatial-temporal relations (adjacency
matrix). We can also see that the temporal information obtained by
the LSTM function is effective to a certain extent. We also find that
the iteration time K for graph learning in GIN performs best when
setting to 2 . However, the performance is not very sensitive to the
iteration number. We examine the effect of temporal smoothness
strategy as post-processing and find it is able to gradually improve
the performance in general. To independently evaluate the effec-
tiveness of GIN, we adopt the annotated CVPI results (ground truth)
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Table 3: Comparative results of spatial-temporal-domain HHI detection (Task II) and recognition (Task III).

Method Temporal Domain Spatial Domain Recognition Overall
A (%) P (%) R (%) F (%) P (%) R (%) F (%) T -1(%) T -2(%) MHIA (%)

Chance 50.0 44.0 48.7 46.2 2.7 3.0 2.9 13.5 35.1 7.0
CNN + LSTM 56.7 53.3 41.5 46.7 31.3 24.4 27.4 53.4 60.1 27.9
GPNN [29] 45.0 58.4 69.5 63.5 48.5 57.7 52.7 24.0 41.0 37.1
w single-view 45.4 46.0 93.6 61.6 36.5 74.9 49.0 34.0 47.3 36.6
w/o pose 44.1 42.3 70.6 52.9 32.3 53.9 40.4 15.0 28.4 27.1
w/o location 62.0 77.6 14.5 24.5 77.2 14.4 24.3 57.5 66.2 19.2
w/o A-supervision 61.4 83.7 13.8 23.7 55.4 9.2 15.7 37.3 46.7 11.7
w/o temporal 48.0 51.1 91.1 65.5 44.2 78.8 56.7 36.7 54.2 40.9
w iter-1 71.9 71.3 48.0 57.4 68.5 46.1 55.1 50.8 62.9 42.3
w iter-3 54.8 53.1 71.4 60.9 47.9 64.4 54.9 44.5 67.0 41.6
w/o smoothness 64.3 57.3 76.1 65.4 51.3 68.2 58.6 46.1 57.3 45.0
w P-GT 65.7 59.9 79.6 68.3 54.3 72.1 61.9 51.2 58.3 49.1
Ours (w iter-2) 65.7 58.8 71.8 64.6 53.8 65.8 59.2 50.9 58.9 46.7

for GIN. This way, w P-GT naturally gets the better performance,
which is also reasonable.

Qualitative Results. We show sample visual results of our full
method for HHI detection and recognition in Figure 4, where the
subjects with/without interaction are in green/gray bounding boxes
while the predicted interaction category labels (green for predicted
label and red for ground-truth label) are shown beside the boxes.
We can see that the proposed method can largely localize the HHI
occurrence interval while some inaccuracies only happen around
the starting and ending time of each HHI. For the temporal-domain
interaction detection, we show the frame-by-frame detection results
in Figure 4. For the spatial-domain interaction detection, from the
second and fourth columns at the top of Figure 4, we can see that
our method can localize the HHI subjects in the crowded scene with
many people. Also, the interaction category is correctly recognized
as shown in the labels beside the bounding boxes. For further analy-
sis, in some cases, the interaction is clear in one view but indistinct
in the other, e.g., the second column in Figure 4. For more serious
cases, one subject with interaction is fully occluded by the others
and can not be seen in one view, as shown in the fourth column. By
this way, the cross-view videos can provide complementary infor-
mation for interaction detection and recognition. Figure 5(a) shows
a failure case. We can see that the true interactive subjects are ‘A’
and ‘C’, while the predicted are ‘A’ and ‘B’. This can be explained
that the false-positive interaction prediction confidence of ‘A’ and
‘B’ is very high in ‘View-1’. In this case, it is difficult to get cor-
rect prediction given that the underlying interactive activities are
fully/partially occluded in both views. To address such problems,
we may need more cameras with different views. Figure 5(b) shows
a failure case of interaction category recognition, where the pre-
dicted category ‘exchanging’ looks very similar to the ground-truth
category ‘shaking’.

5 CONCLUSION
This paper proposed and addressed a new problem of cross-view hu-
man identification and interaction detection in multi-person scene
captured by two wearable cameras. We simultaneously studied
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the mutual dependence and promotion of three important tasks
in video surveillanc. We propose a GNN based framework to ad-
dress our problem by exploiting the advantages of graph structure
in modeling the relations among multiple subjects. We also col-
lected a new video dataset to evaluate the proposed approach and
the results verified the effectiveness of our method. Through the
above efforts, we just hope to provide the resources for studying
this new problem and move the human activity analysis one more
step toward realistic scenarios. In the future, we plan to study the
human interaction detection and recognition in the scenario where
multiple interactive activities occur simultaneously.
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